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Abstract. This study reports univariate modeling methodologies applied to the maximum tsunami wave height over Sibolga,
Sumatra. The univariate time series models fitted are autoregressive model (AR), autoregressive integrated moving average
(ARIMA) and autoregressive neural network (AR-NN). Goodness of fit of the models to the time series of maximum tsunami
wave height has been assessed using percentage of prediction error, Pearson correlation coefficient, and Willmott’s indices. After
rigorous skill assessment using the above three models, the AR-NN model with seven previous values as predictor has been
identified as the best predictive model for the time series under study.

Keywords: Maximum tsunami wave height, AR, ARIMA, AR-NN, Sibolga

1. Introduction

The 26 December 2004 Sumatra—Andaman earthquake was the first M > 9 event to be recorded by a global
network of broadband seismic stations and regional Global Positioning System (GPS) networks. Analysis of this
data has led to a new understanding of the mechanics of great subduction zone of earthquakes [12]. Kinematic
rupture models for the 2004 Sumatra—Andaman earthquake exhibit complexity on broad scales in both space and
time [2,28]. Tsunamis are generated when the sea floor abruptly deforms and vertically displaces the overlying water.
Tectonic earthquakes are associated with the earth’s crust deformation. When these earthquakes occur beneath the
sea, the water above the deformed area is displaced from its equilibrium position [15,27]. Waves are formed as the
displaced water mass moves under the influence of gravity to regain its equilibrium. ‘A tsunami is made up of a series
of very long waves. The waves will travel outward on the surface of the ocean in all directions away from the source
area, much like the ripples caused by throwing a rock into a pond. The wavelength and period of the tsunami waves
will depend on the generating mechanism and the dimensions of the source event. If the tsunami is generated from
a large earthquake over a large area, its initial wavelength and period will be greater. If a local landslide causes the
tsunami, both its initial wavelength and period will be shorter. The period of the tsunami waves may range from 5 to
90 minutes. A tsunami can cause damage thousands of miles from its origin, so there may be several hours between
its creation and its impact on the coast, more time than it takes for seismic waves to arrive. Works are also published
earlier with different issues associated with tsunamis [19,29].

The tsunami event under consideration occurred at 07:59 local time (00:59 UTC) on 26 December 2004, a moment
magnitude (Mw) 9.3 megathrust earthquake occurred along 1300 km of the oceanic subduction zone located 100 km
west of Sumatra and the Nicobar and Andaman Islands in the eastern Indian Ocean [28]. Highly destructive waves
were generated by up to about 10 m vertical displacements associated with massive (more than 20 m horizontally),

*Corresponding author: S.S. De, E-mail: de_syam_sundar@yahoo.co.in.

ISSN 1574-1699/11/$27.50 © 2011 - TOS Press and the authors. All rights reserved



358 S.S. De et al. / Time series modelling of maximum tsunami wave heights recorded in Sibolga (Sumatra)

sudden movements of adjacent plates during this event. The catastrophic regional impact of this tsunami was
tremendous. The presentation of the time series of tsunami wave heights for the December 2004 event are given
over the major water basins of the Atlantic, Indian and Pacific oceans [28]. Those time series plots exhibited how
the tsunami wave heights depart from the ordinary wave heights. Some typical measurements of tsunami heights
along the different coastal lines of Sri Lanka have been reported [32]. Tsuji et al. surveyed the waveforms of the
aforementioned event and reported that all of the recorded tsunami waveforms indicate subsiding sea level with
duration of 30 to 60 minutes, followed by the rising up [30]. The surveys of this catastrophe include the works of
Satake et al. [25]. The largest measured tsunami heights, which were at Lhoknga in northwest Sumatra about 15 km
southwest of Banda Aceh, were greater than 30 m. Tsunami height decreased to about 1.5 m at Meulaboh, which
is located in northwestern Sumatra about 175 km southeast of Banda Aceh. Tsunami heights of about 2 m were
measured in Sibolga, a fishing port in a natural embayment about 500 km southwest of Banda Aceh [16].

It has been established by Saxena and Zielinski that maximum tsunami wave height and its direction of propagation
will be an added parameter to the tsunami warning system [25]. Some significant papers in the literature are available,
where various aspects of maximum tsunami wave heights have been studied statistically. A theoretical study was
carried out by Mofjeld et al. to understand how the probability distribution for maximum wave heights during
maximum wave heights [26]. The purpose of the present paper is to develop a univariate model for the maximum
tsunami wave height. It has been attempted to examine whether a series of maximum wave heights observations
can be modeled using a univariate approach. As the study zone, we have chosen Sibolga, which was affected by
the devastating tsunami of 2004. For development of a complete forecast model, we need to test this approach for
various other tsunami cases. The present paper is the first step.

The present paper deals with a time series of tsunami maximum wave heights over Sibolga obtained at 10-minute
intervals. A detailed geographical description of the study area is available in Puspito and Gunawan, where a
comprehensive survey of the tsunami wave height has been presented [22]. Since the wave height is the prime reason
behind this catastrophe, it was felt that a study of the univariate time series might give some insight into its evolution.
To do this, the autocorrelation structure of the time series would be analyzed at the outset and subsequently, the
autoregressive modeling would be done using three methods: autoregression (AR), autoregressive integrated moving
average (ARIMA), and autoregressive neural network (AR-NN). Section 2 discusses the autocorrelation structure
of the time series, Section 3 discusses the implementation procedure of the three competing univariate models,
Section 4 discusses the statistical skill assessment of the models, and Section 5 presents the conclusion.

2. Analysis of the autocorrelation function

The prefix “auto” in autocorrelation denotes the correlation of a variable with itself, so that temporal autocorrelation
indicates the correlation of a variable with its own future and past values. In this sense, it provides information
on data memory. For instance, a fast decrease is indicative of no correlated measurements. However, it may also
be used to reveal periodicities in the data [21]. Sometimes such correlations are referred to as lagged correlations.
Almost always, autocorrelations are computed as Pearson product-moment correlation coefficients, although there
is no reason why other forms of lagged correlation cannot be computed as well [33]. Autocorrelation coefficients
are for the present and past of a time series. It is mathematically defined as [33]:

n—k
;1 [(z: = Z-) Tk — Z4)]

= n—k n 1/2
Y @i—-2-)" X (zi—z4)
i=1 i=k+1

Where, 1, = autocorrelation coefficient of Lag k
Z_ = First (n—k) data values
Z+ = Last (n—k) data values
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Table 1
The sample ACF and PACF along with the Box-Ljung Statistic

Lag  Autocorrelation  Partial autocorrelation ~ Box-Ljung Statistic
Jfunction Value df
1 0.631 0.631 49.846 1
2 0.359 —0.067 66.063 2
3 0.228 0.048 72.670 3
4 0.163 0.024 76.088 4
5 0.056 —0.098 76.495 5
6 —0.154 —0.257 79.568 6
7 —0.130 0.162 81.783 7
8 0.058 0.246 82.230 8
9 0.185 0.113 86.814 9
10 0.211 0.052 92.854 10
11 0.247 0.106 101.163 11
12 0.315 0.025 114.807 12
13 0.286 -0.079 126.147 13
14 0.159 —0.027 129.693 14
15 0.025 . —0.018 129.784 15
16 0.006 0.061 129.790 16
17 0.036 0.084 129.974 17
18 —0.048 —0.105 130.315 18
19 —0.055 0.029 130.765 19
20 —0.010 —0.044 130.780 20
21 0.066 —0.034 131.442 21
22 0.056 —0.084 131.921 22
23 —0.002 —0.002 131.922 23
24 —0.054 —0.126 132.365 24
25 —0.110 —0.142 134.237 25
26 —0.137 —0.004 137.215 26
27 —0.170 0.005 141.798 27
28 -0.159 —0.014 145.890 28
29 —0.115 0.010 148.028 29
30 —0.047 0.058 148.384 30

aan o gat of data valinas amd ansthar cat of Aa
welii a 5C€U U1 Gawa vVaiuls ana anouici 58t O1 Qa-

ta of the same size, but lagged by k time steps. For example lag-1 autocorrelation from the data series
{Z1z2Ts ovvvi Zr } would be computed from the following boxed data pairs:

That is, the data pairs would be (z1, z2), (x2, Z3), (z3, Z4) etc. Knowledge of the autocorrelation function also aids
in selecting time series models, such as autoregressive moving average (ARMA), autoregressive integrated average
model (ARIMA), and so on and allows for the correct application of statistical methods in data analysis by aiding in
the determination of whether the data are independent [21,33].

The lag-1 autocorrelation is the most commonly computed measure of persistence, but it is also sometimes of
interest to compute autocorrelations at longer lags. Conceptually, this is no more difficult than the procedure for the
lag-1 autocorrelation, and computationally the only difference is that the two series are shifted by more than one
time unit. As a time series is shifted increasingly relative to itself, there is progressively less overlapping data to
work with [33].

The collection of autocorrelations computed for various lags are called the autocorrelation function. Often
autocorrelation functions are displayed graphically with the autocorrelations plotted as a function of lag. Applications
of autocorrelation in geophysical studies are well-known [4,8,13,17,21,31,35].

In the present work, the maximum tsunami wave height time series are considered whose entries are obtained
at 10-minute intervals. The data points contain 132 entries. In Table 1, the sample autocorrelation coefficients
and the partial autocorrelation coefficients are presented along with the Box-Ljung statistic. The autocorrelation
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Fig. 1. a. Schematic showing the autocorrelation function (ACF) of maximum Tsunami wave height. b. Schematic showing the partial
autocorrelation function (PACF) of maximum Tsunami wave height.

function is computed up to 30 lags. It has been observed that the lag-1 autocorrelation coefficient is high (> 0.5),
which indicates that the maximum wave heights influence the subsequent wave heights in 10 minutes intervals.
It should be noted that the autocorrelation coefficients are significant at 5% level. However, at higher lags, the
autocorrelation coefficients are not high and the autocorrelation function does not tend to 0 with increase in the lags.
Furthermore, the autocorrelation function has no sinusoidal pattern, although there are positive as well as negative
spikes in the autocorreiation function. Therefore, the time series is not characterized by any cyclic pattern. The
sample autocorrelation function and the sample partial autocorrelation function are displayed in Figs 1a and 1b.

3. Methodology
3.1. Autoregression (AR)

An autoregressive process of order p is denoted as AR(p) and is given by the equation [3]

Zi=P1Zi a1+ 2ot .+ P ptay 1)
where ¢1, @2, ..., ¢p are adjustable parameters and Z; = 2; — ¢ [3]. The autocorrelation function satisfies the
equation :

Pr = $1pk—1 + P2pk—2 + ... + dppp (V)]

Substituting kK = 1, 2, ..., p in Eq. (2), the system of Yule-Walker equations is obtained [3]:

pr=¢1+d2p1 +... + Dpop-1

p2=¢1p1+ b2 + ...+ dppp2 3

Pp = 1Ppp-1+ P2pp—2+ ...+ Py

The Yule-Walker estimates of the autoregressive parameters ¢1, @, . . ., ¢, are obtained by replacing the theoretical
autocorrelation pg by the estimated autocorrelation r. Thus, the matrix notation, the autoregression parameters can
be written as:

®=R1r @
Where,
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Fig. 2. Schematic showing the AIC for the competitive orders of autoregressive processes.
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The fifteen autoregressive models (AR(1), AR(2), ..., AR(15)) have been generated for tsunami maximum wave
height time series, which has already been identified as a stationary time series using the method explained above.
While developing the above autoregressive models, the Pearson correlations are computed between the actual and
predicted values and the Akaike Information Criteria (AIC) corresponding to the models [33]. The results showed
that the Pearson correlations are gradually increasing with an increase in the order of the autoregression. However,
after order 7, the correlations are becoming almost constant despite increase in the order of the autoregressive model.
It is therefore understood that the increase in the order after AR(7) is not having any significant impact upon the
prediction. Therefore, it is concluded that seven previous values of the time series are having impact upon the eighth
entry of the time series. Simultaneously, it has been observed that AIC of AR(7) attains its minimum for the seventh
order of autoregression in Fig. 2. In the subsequent sections, seven previous values of the time series will be used to
predict the eighth entry.

3.2. Autoregressive integrated moving average (ARIMA)

In Eq. (1), if we take p = 1, we get the AR(1) process whose parameters are obtained using the method described
in the last section. From the AR(1) process, the characteristic root is obtained as 1.56, which is outside the unit
circle. Thus, the time series is identified as non-stationary [5]. Consequently, ARIMA, a non-stationary process is
used. A mixed autoregressive moving average (ARMA) model is expressed as [3]:

¢(B)z =0(B)a: 6)

where ¢ (B) and 6 (B) are polynomials of degree p and q respectively, B is the backward shift operator, and
Z; = z; — . The ARMA process is stationary if the roots of ¢ (B) = 0 lie outside the unit circle and it exhibits
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explosive non-stationary behaviour if they lie inside the unit circle. If ¢ (B) is a stationary autoregressive operator,
then the autoregressive integrated moving average (ARIMA) process is derived as

¢ (B)(1-B)? % =06(B)as )

Where, d denotes the number of times the stationary process is summed. Introducing the backward difference
operator V = 1 — B, and V%7, = V%2, the above equation becomes

¢(B) V%% = 0(B)a, ®)
where, considering the various values of p, d and ¢, the ARIMA model is written as ARIMA(p, d, ¢). In the cases

of non-seasonal time series, values of p, d and g are rarely greater than 2 and the following orders of ARIMA are of
most frequent use [3]:

e ARIMA(1,1,1)
In this case, Eq. (8) takes the form
(1 - ¢1B) Vzt = (l - GlB) ag (9)

¢ ARIMA(0,1,1)
In this case, Eq. (8) takes the form

VZt = (1 — 013) at . (10)
3.3. Autoregressive neural network (AR-NN)

The present paper applies artificial neural network (ANN) in the form of multilayer perceptron (MLP). Neural
network models in artificial intelligence are usually referred to as artificial neural networks (ANNs); these are
essentially simple mathematical models defining a function f : X — Y or a distribution over X or both X and Y, but
sometimes models also intimately associated with a particular learning algorithm or learning rule. A common use
of the phrase ANN model really means the definition of a class of such functions, where members of the class are
obtained by varying parameters, connection weights, or specifics of the architecture such as the number of neurons
or their connectivity. ANN is useful in the situations, where underlying processes / relationships may display chaotic
properties. ANN does not require any prior knowledge of the system under consideration and are well suited to
model dynamic systems on a real-time basis. An artificial neural network is a multiprocessor computer system
based on the parallel architecture of the brain [14]. The advent of the feed forward ANN, or Multilayer Perceptron
(MLP) with Backpropagation learning — an adaptation of the steepest descent method, opened up new avenues for
the application of ANN for problems of practical interest [11]. In MLP, each network consists of several simple

processors called neurcns, or cells, which are highly interconnected and are arranged in several layers [11]. There

are three basic types of layers: input layer, hidden layer(s), and output layer.

The theoretical details of MLP are available in various texts on ANN [14]; its suitability in thunderstorm
atmospheric, environmental and oceanic modeling is known [11]. An equivalent form of the linear autoregressive
model of order p given in Eq. (1) can be expressed as a fixed number of previous values of a time series including a
noise term as follows:

P
z(t)=) ouw(t—i)+ € (t) 1)
=1
The above form is taken to show the resemblance between regression and ANN based forecast model. In Eq. (11),
a linear function F'Zcan be introduced and its equivalent form would be [9]

z(t)=F'(@(t—1),z(t-2),...,z(t—p))+ € (1) (12)

In Eq. (12), if L is replaced by MLP, then an autoregressive neural network (AR-NN) model will be obtained.
To develop the AR-NN model, seven predictors have been used. The predictors are coming from the time series
itself. For example, if the time series is written as the sequence {z:|t = 1,2, ..., 132}, for the predictand xs, the
predictors are x1, T2, T3, Z4, 5, Te, and z7. It should be noted that the word “predictand’ stands for the dependent
variable in any regressive model [33]. Since seven consecutive values are predicting the eighth value, finally, the
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input matrix for the AR-NN would be of order (124 x 7) and the target output matrix would be of order (124 x 1).
The entire set of 124 patterns has been divided into training and test cases in the ratio of 7:3. Training set means the
set of data used to train the ANN and test set means the set of data used to test the goodness of the model [23]

The type of nonlinearity of an ANN is determined by the activation function. The theoretical details of activation
function and its applications are available in Rojas [23]. There are different types of activation function available in
the literature such as sigmoid function, tanh, etc. [23]. Advantages of sigmoid function are established [11]. This
function is given by f (z) = (1 + e‘”)—l. In the present paper, sigmoid non-linearity is used to train the ANN. In
mathematical form, the adaptive procedure of a feed forward MLP can be presented as

W41 = Wk + Ndg ' (13)

The above equation represents an iterative process that finds the optimal weight vector by adapting the initial
weight vector wg. This adaptation is performed by presenting to the network pairs of input and target vectors in
sequence. The direction vector dj, is the negative gradient of the output error function E. Mathematically, it is
denoted as
4

Several methods have been proposed to speed-up the conventional backpropagation learning. In the present paper,
the procedure of adaptive gradient learning proposed by Amari et al. [1] is adopted to train the MLP. An extensive
description of the adaptive gradient learning is available [1]. Minimization of the mean squared error is chosen as
the stopping criterion. The model has been validated over the entire set of 124 patterns. The results are discussed in
the subsequent sections.

4, Evaluation of the models

In the present section, performances of the models are assessed statistically using the following statistics:

a. Percentage of Prediction error (PE)

b. Pearson correlation coefficient between actual and predicted values (PCC)
¢. Willmott’s index of order 1 (d)

d. Willmott’s index of order 2 (d?)

Overall prediction error (PE) is computed as [20]
pr (lypredicted - yactualD x 100

= . (18)
(yactual> b4

The PCC measures the degree of linear association between two variables. Mathematically it is written as [33]

Covariance(z,
pay = SNEIRICEAT,Y) (16)

Ty
Willmott [34] recommended computation of some ‘summary measures’ to assess the degree to which a model
output fits an observed dataset. According to Willmott, these measures are more illuminating than the measure of
coefficient of determination and correlation [6,7]. Fox [10] recommended the use of mean square error (MSE) but
Willmott [34] described the limitations of the MSE, and alternatively proposed and used as ‘index of agreement’ of
the form
-1

e =1- [Zm—oir’] [Z(|P,-~6[+ |0; - o))® an

where @ = 1 and 2, P implies predicted value, and O implies observed value. For o = 1 and o = 2, one can get d
and d2. Closeness of Willmott’s indices to 1 implies good predictive model.

Among all the models under study, the minimum PE and maximum PCC occurs in the case of AR-NN. However, in
the other models PE and PCC are sufficiently high. The values can be observed in Fig. 3. In the next step, the values
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Fig. 3. Schematic showing the Prediction Error, Pearson Correlation, Willmott’s indices of order 1 (WI1) and order 2 (WI2) available for the
AR(7), ARIMA(1,1,1), ARIMA(0,1,1) and AR-NN models.
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Fig. 4. Schematic showing the association between the actual maximum tsunami wave height and those predicted by AR(7).

of the WI are compared for the entire model under study. It is observed that in case of AR-NN, the value is greater
than 0.8 and in the case of AR(7) the value is 0.65 which is the minimum WI(1). ARIMA(1,1,1) and ARIMA(0,1,1)
have WI(1) values very close to each other. Similar trend is observed in the case of WI(2) which attains its maximum
for AR-NN and minimum for AR(7). This indicates that AR(7) has the least potential to predict the time series of
maximum tsunami wave height. Although ARIMA(1,1,1) and ARIMA(O,1,1) are sufficiently capable of modeling
the time series, AR-NN performed better with the same set of seven predictors. Therefore, it is understood that
AR-NN of order seven is the best model for the maximum tsunami wave height time series. In Figs 4,5, 6 and 7, the
line diagrams for the actual time series and those predicted by AR(7), ARIMA(1,1,1), ARIMA(0,1,1) and AR-NN
respectively are presented. All the models exhibit the random nature of the time series. However, it is observed in
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Fig. 5. Schematic showing the association between the actual maximum tsunami wave height and those predicted by ARIMA(1,1,1).
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Fig. 7 that the maximum closeness between actual and predicted time series occurs in the case of AR-NN with seven
previous values as predictors. In Fig. 8, the prediction is presented. First, 5% error of prediction is chosen as the
upper limit of acceptable error. It is found that in 33.87% of the validation cases, the prediction error is less than 5%
for the AR(7). Thus, prediction yield in this case is 0.3387. It has been found that the maximum prediction yield for
5% error in the case of AR-NN, is 0.5806. Similarly, in the case of 10% allowable prediction error, the maximum
prediction is 0.8145, which corresponds to AR-NN. These prediction yields the supremacy of AR-NN model over the
other models. As a further visual support to the prediction quality for the models under consideration, the residuals
corresponding to each model calculated over the entire validation set are presented in Fig. 9, which shows that the
residuals corresponding to AR-NN model lies below the other competitive models in most of the validation cases.
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In the study demonstrated above we have restricted the ARIMA models to the orders of (1,1,1) and (0,1,1).
The natural question that may arise is: Why are we not experimenting with higher orders of ARIMA? 1t is already
stated that the theoretical reasons behind these popular choices of orders of ARIMA are available in reference [3].
The computation in this study shows that these two orders are generating predictions which are having very high
correlation coefficients, high Willmott’s indices and very low error of prediction. Thus, adding any more order of
autoregression or moving average to this model would add nothing but some degree of complexity. That is why, the
orders of ARIMA are not increased further.
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Fig. 9. Schematics showing the residuals for the predictions from (a.)AR-NN, (b)AR(7), (c)ARIMA(1,1,1), and (d) ARIMA(O,1,1).
5. Conclusion

In the present paper, a univariate approach is adopted to predict the maximum tsunami wave height over Sibolga,
Sumatra. Initially, the autocorrelation structure is analyzed and it is revealed that there is no deterministic pattern
in the time series and the time series is not generated by a stationary process. In the next step, AR(7) model is
generated for the said time series. After considering the model, it is shown that AR(7) produces the minimum
values of Pearson correlation coefficient, Willmott’s indices and maximum values of percentage of prediction error.
In the next phase, ARIMA(1,1,1) and ARIMA(O,1,1) models are generated. In these models, Pearson correlation
coefficient and Willmott’s indices are very close to each other. The final model is the AR-NN model, which produces
maximum correlation coefficient and Willmott’s indices and minimum percentage of prediction error. Therefore, the
final conclusion is that the AR-NN with seven predictors best fits the time series of maximum tsunami wave height
over the study zone and that it has maximum prediction capacity among all the univariate models considered in this
study.
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